Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 207-218, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38116932

RESUMO

Pearl farming is crucial for the economy of French Polynesia. However, rearing structures contribute significantly to plastic waste, and the widespread contamination of pearl farming lagoons by microplastics has raised concerns about risks to the pearl industry. This study aimed to evaluate the effects of micro-nanoplastics (MNPs, 0.4-200 µm) on the pearl oyster (Pinctada margaritifera) over a 5-month pearl production cycle by closely mimicking ecological scenarios. MNPs were produced from weathered plastic pearl farming gear and tested at environmentally relevant concentrations (0.025 and 1 µg L-1) to decipher biological and functional responses through integrative approaches. The significant findings highlighted the impacts of MNPs on oyster physiology and pearl quality, even at remarkably low concentrations. Exposure to MNPs induced changes in energy metabolism, predominantly driven by reduced assimilation efficiency of microalgae, leading to an alteration in gene expression patterns. A distinct gene expression module exhibited a strong correlation with physiological parameters affected by MNP conditions, identifying key genes as potential environmental indicators of nutritional-MNP stress in cultured oysters. The alteration in pearl biomineralization, evidenced by thinner aragonite crystals and the presence of abnormal biomineral concretions, known as keshi pearls, raises concerns about the potential long-term impact on the Polynesian pearl industry.


Assuntos
Ostreidae , Pinctada , Animais , Microplásticos , Plásticos , Agricultura , Fazendas , Pinctada/metabolismo
2.
Mar Environ Res ; 191: 106149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611374

RESUMO

In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly. Individuals at the upper range limit produced energy more efficiently, as seen by steeper metabolic reactive norms and unaltered ATP levels despite reduced mitochondrial density. By spending most of their time emerged, oysters mounted an antioxidant shielding concomitant with lower levels of pro-oxidant proteins and postponed age-related telomere attrition. Instead, individuals exposed at the lower limit range near subtidal conditions showed lower energy efficiencies, greater oxidative stress and shorter telomere length. These results unraveled the extended acclimatization strategies and the physiological costs of living too fast in subtidal conditions for an intertidal species.

3.
Sci Total Environ ; 896: 164955, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348714

RESUMO

The increasing production of plastics together with the insufficient waste management has led to massive pollution by plastic debris in the marine environment. Contrary to other known pollutants, plastic has the potential to induce three types of toxic effects: physical (e.g intestinal injuries), chemical (e.g leaching of toxic additives) and biological (e.g transfer of pathogenic microorganisms). This critical review questions our capability to give an effective ecological risk assessment, based on an ever-growing number of scientific articles in the last two decades acknowledging toxic effects at all levels of biological integration, from the molecular to the population level. Numerous biases in terms of concentration, size, shape, composition and microbial colonization revealed how toxicity and ecotoxicity tests are still not adapted to this peculiar pollutant. Suggestions to improve the relevance of plastic toxicity studies and standards are disclosed with a view to support future appropriate legislation.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Plásticos/toxicidade , Plásticos/química , Resíduos/análise , Poluição Ambiental , Monitoramento Ambiental
4.
Environ Pollut ; 331(Pt 2): 121861, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245792

RESUMO

Fast fashion and our daily use of fibrous materials cause a massive release of microfibres (MF) into the oceans. Although MF pollution is commonly linked to plastics, the vast majority of collected MF are made from natural materials (e.g. cellulose). We investigated the effects of 96-h exposure to natural (wool, cotton, organic cotton) and synthetic (acrylic, nylon, polyester) textile MF and their associated chemical additives on the capacity of Pacific oysters Crassostrea gigas to ingest MF and the effects of MF and their leachates on key molecular and cellular endpoints. Digestive and glycolytic enzyme activities and immune and detoxification responses were determined at cellular (haemocyte viability, ROS production, ABC pump activity) and molecular (Ikb1, Ikb2, caspase 1 and EcSOD expression) levels, considering environmentally relevant (10 MF L-1) and worst-case scenarios (10 000 MF L-1). Ingestion of natural MF perturbed oyster digestive and immune functions, but synthetic MF had few effects, supposedly related with fibers weaving rather than the material itself. No concentration effects were found, suggesting that an environmental dose of MF is sufficient to trigger these responses. Leachate exposure had minimal effects on oyster physiology. These results suggest that the manufacture of the fibres and their characteristics could be the major factors of MF toxicity and stress the need to consider both natural and synthetic particles and their leachates to thoroughly evaluate the impact of anthropogenic debris. Environmental Implication. Microfibres (MF) are omnipresent in the world oceans with around 2 million tons released every year, resulting in their ingestion by a wide array of marine organisms. In the ocean, a domination of natural MF- representing more than 80% of collected fibres-over synthetic ones was observed. Despite MF pervasiveness, research on their impact on marine organisms, is still in its infancy. The current study aims to investigate the effects of environmental concentrations of both synthetic and natural textile MF and their associated leachates on a model filter feeder.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Oceanos e Mares , Plásticos/metabolismo , Poluição Ambiental , Têxteis , Poluentes Químicos da Água/metabolismo
5.
Sci Total Environ ; 857(Pt 2): 159318, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220465

RESUMO

Plastic food packaging represents 40 % of the plastic production worldwide and belongs to the 10 most commonly found items in aquatic environments. They are characterized by high additives contents with >4000 formulations available on the market. Thus they can release their constitutive chemicals (i.e. additives) into the surrounding environment, contributing to chemical pollution in aquatic systems and to contamination of marine organism up to the point of questioning the health of the consumer. In this context, the chemical and toxicological profiles of two types of polypropylene (PP) and polylactic acid (PLA) food packaging were investigated, using in vitro bioassays and target gas chromatography mass spectrometry analyses. Plastic additives quantification was performed both on the raw materials, and on the material leachates after 5 days of lixiviation in filtered natural seawater. The results showed that all samples (raw materials and leachates) contained additive compounds (e.g. phthalates plasticizers, phosphorous flame retardants, antioxidants and UV-stabilizers). Differences in the number and concentration of additives between polymers and suppliers were also pointed out, indicating that the chemical signature cannot be generalized to a polymer and is rather product dependent. Nevertheless, no significant toxic effects was observed upon exposure to the leachates in two short-term bioassays targeting baseline toxicity (Microtox® test) and Pacific oyster Crassostrea gigas fertilization success and embryo-larval development. Overall, this study demonstrates that both petrochemical and bio-based food containers contain harmful additives and that it is not possible to predict material toxicity solely based on chemical analysis. Additionally, it highlights the complexity to assess and comprehend the additive content of plastic packaging due to the variability of their composition, suggesting that more transparency in polymer formulations is required to properly address the risk associated with such materials during their use and end of life.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Polipropilenos/análise , Embalagem de Alimentos , Poluentes Químicos da Água/análise , Plásticos/análise , Poliésteres/análise , Polímeros/análise , Bioensaio , Medição de Risco
6.
Waste Manag ; 157: 242-248, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577275

RESUMO

This opinion paper offers a scientific view on the current debate of the place of biodegradable plastics as part of the solution to deal with the growing plastic pollution in the world's soil, aquatic, and marine compartments. Based on the current scientific literature, we focus on the current limits to prove plastic biodegradability and to assess the toxicity of commercially used biobased and biodegradable plastics in natural environments. We also discuss the relevance of biodegradable plastics for selected applications with respect to their use and end of life. In particular, we underlined that there is no universal biodegradability of plastics in any ecosystem, that considering the environment as a waste treatment system is not acceptable, and that the use of compostable plastics requires adaptation of existing organic waste collection and treatment channels.


Assuntos
Plásticos Biodegradáveis , Ecossistema , Plásticos , Poluição Ambiental , Solo
7.
Environ Pollut ; 315: 120383, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223856

RESUMO

The impact of microplastics (MP) has attracted much attention from the scientific community and many laboratory assessments have been made of their effects on aquatic organisms. To produce MP from real environmental plastic waste, which would enable more realistic experiments, we used plastic pearl farming equipment from French Polynesian lagoons. Here, the pearl oyster Pinctada margaritifera could encounter MP coming from their breakdown in its surrounding environment. We tested an established method based on mechanical cryogenic grinding and liquid sieving. Our desired size range was 20-60 µm, corresponding to the optimal particle size ingested by P. margaritifera. The protocol was effective, generating MP particles of 20-60 µm (∼17,000-28,000 MP µg-1), but also produced too many smaller particles. The peak in the desired size range was thus flattened by the many small particles <3 µm (∼82,000-333,000 MP µg-1; 53-70% of total analysed particles), visible at the limit of Coulter counter analysis (cut-off point: 2 µm). Laser diffraction analysis (cut-off point: 0.4 µm) provided greater detail, showing that ∼80-90% of the total analysed particles were <1 µm. Diverging particle size distributions between those expected based on sieving range and those really observed, highlight the need to perform fine-scaled particle size distribution analyses to avoid underestimating the number of small micro- and nanoplastics (MNP) and to obtain an exact estimation of the fractions produced. Size and microstructure characterization by scanning electron microscopy suggested spontaneous particle self-assembly into crystal superstructures, which is the supposed cause of the divergence we observed. Overall, our results emphasize that particle self-assembly is a technical hurdle requiring further work and highlight the specific need to finely characterize the size distribution of MNP used in ecotoxicological experiments to avoid overestimating effects.


Assuntos
Pinctada , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecotoxicologia , Tamanho da Partícula , Organismos Aquáticos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
Mar Environ Res ; 180: 105709, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35988349

RESUMO

The Pacific oyster Crassostrea gigas is established in the marine intertidal zone, experiencing rapid and highly dynamic environmental changes throughout the tidal cycle. Depending on the bathymetry, oysters face oxygen deprivation, lack of nutrients, and high changes in temperature during alternation of the cycles of emersion/immersion. Here we showed that intertidal oysters at a bathymetry level of 3 and 5 m delayed by ten days the onset of mortality associated with Pacific Oyster Mortality Syndrome (POMS) as compared to subtidal oysters. Intertidal oysters presented a lower growth but similar energetic reserves to subtidal oysters but induced proteomic changes indicative of a boost in metabolism, inflammation, and innate immunity that may have improved their resistance during infection with the Ostreid herpes virus. Our work highlights that intertidal harsh environmental conditions modify host-pathogen interaction and improve oyster health. This study opens new perspectives on oyster farming for mitigation strategies based on tidal height.


Assuntos
Crassostrea , Herpesviridae , Animais , Interações Hospedeiro-Patógeno , Imunidade Inata , Proteômica
9.
Mar Pollut Bull ; 181: 113936, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35850084

RESUMO

Tires can release a large number of chemical compounds that are potentially hazardous for aquatic organisms. An ecophysiological system was used to do high-frequency monitoring of individual clearance, respiration rates, and absorption efficiency of juvenile oysters (8 months old) gradually exposed to four concentrations of tire leachates (equivalent masses: 0, 1, 10, and 100 µg tire mL-1). Leachates significantly reduced clearance (52 %) and respiration (16 %) rates from 1 µg mL-1, while no effect was observed on the absorption efficiency. These results suggest that tire leachates affect oyster gills, which are the organ of respiration and food retention as well as the first barrier against contaminants. Calculations of scope for growth suggested a disruption of the energy balance with a significant reduction of 57 %. Because energy balance directs whole-organism functions (e.g., growth, reproductive outputs), the present study calls for an investigation of the long-term consequences of chemicals released by tires.


Assuntos
Crassostrea , Animais , Organismos Aquáticos , Brânquias , Respiração , Borracha
10.
J Hazard Mater ; 427: 127883, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863561

RESUMO

Rubber products and debris with specific chemical signatures can release their constitutive compounds into the surrounding environment. We investigated the chemical toxicity of different types of new and used rubber products (tires, crumb rubber granulates, aquaculture rubber bands) on early life stages of a model marine organism, Pacific oyster Crassostrea gigas. Leachates obtained from used products were generally less toxic than those from new ones. Leachates from new products induced embryotoxicity at different concentrations: oyster-farming rubber bands (lowest observed effect concentration, LOEC = 1 g L-1) and crumb rubber granulates (LOEC = 1 g L-1) > tires (LOEC = 10 g L-1). Moreover, new oyster-farming rubber bands induced spermiotoxicity at 10 g L-1 (-29% survival) resulting in decreased oyster reproductive output (-17% fertilization yield). Targeted chemical analyses revealed some compounds (2 mineral contaminants, 15 PAHs, 2 PCBs) in leachates, which may have played a role. Rubber used in marine aquaculture (rubber bands) or present at sea as waste (tire, crumb rubber granulates) therefore release hazardous chemical molecules under realistic conditions, which may affect oyster development. Aquaculture development work is necessary to improve practices for eco-safety, as efforts to limit the contamination of marine environments by terrestrial rubber debris.


Assuntos
Crassostrea , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Agricultura , Animais , Aquicultura , Organismos Aquáticos , Poluentes Químicos da Água/toxicidade
11.
J Hazard Mater ; 419: 126396, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171671

RESUMO

Pearl-farming is the second most important source of income in French Polynesia. However, tropical lagoons are fragile ecosystems with regard to anthropogenic pressures like plastic pollution, which threaten marine life and the pearl oyster-related economy. Here, we investigated the spatial distribution of microplastics (MP) and concentrations in surface water (SW), water column (WC) and cultivated pearl oyster (PO) from three pearl-farming atolls with low population and tourism. Microplastics were categorized by their size class, shape, colour and polymer type identified using FTIR spectroscopy. Widespread MP contamination was observed in every study site (SW, 0.2-8.4 MP m-3; WC, 14.0-716.2 MP m-3; PO, 2.1-125.0 MP g-1 dry weight), with high contamination in the WC highlighting the need to study the vertical distribution of MP, especially as this compartment where PO are reared. A large presence of small (< 200 µm) and fragment-shaped (> 70%) MP suggests that they result from the breakdown of larger plastic debris. The most abundant polymer type was polyethylene in SW (34-39%), WC (24-32%), while in PO, polypropylene (14-20%) and polyethylene were more evenly distributed (9-21%). The most common MP identified as black-grey polyethylene and polypropylene matches the polymer and colour of ropes and collectors questioning a pearl-farming origin.


Assuntos
Pinctada , Poluentes Químicos da Água , Agricultura , Animais , Ecossistema , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 749: 141651, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32836131

RESUMO

Plastic pollution is a source of chemical to the environment and wildlife. Despite the ubiquity of plastic pollution and thus plastic additive in the environment, plastic additives have been studied to a limited extend. As a prerequisite to a study aiming to evaluate the leaching of a common additive used as an antioxidant (Irgafos® 168) from polyethylene microparticles, an inventory of the potential background contamination of the laboratory workplace was done. In this study, Irgafos® 168 (tris(2,4-ditert-butylphenyl) phosphite) and its oxidized form (tris (2,4-ditert-butylphenyl) phosphate) were quantified in different laboratory reagents, including the plastic packaging and the powders, using Pyrolysis-GC/MS. At least one form of Irgafos® 168 was detected in all tested laboratory reagents with higher concentrations in caps and bottles as compared to the powders. Additionally, oxidized Irgafos® 168 was also found in the reverse osmosed and deionized water container used in the laboratory. The same profile of contamination, i.e. higher concentration of the oxidized form and higher concentrations in acidic reagents, was observed when comparing the reagent and their respective containers suggesting that the additive is leaching from the container into the powder. Overall, this study demonstrates that the antioxidant additive Irgafos® 168 is ubiquitous in the laboratory workplace. Plastic additives such as Irgafos® 168 can therefore largely interfere and biased ecotoxicological and toxicological studies especially using environmentally relevant concentrations of microplastics. The source, fate and effects of plastic additive from plastic debris should be carefully considered in future studies that require setting up methods to overcome these contaminations.

13.
Environ Pollut ; 266(Pt 3): 115180, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32673975

RESUMO

A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 µm) at 0.25, 2.5, and 25 µg L-1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.


Assuntos
Pinctada , Animais , Metabolismo Energético , Microplásticos , Plásticos , Transcriptoma
14.
Nat Commun ; 11(1): 3454, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651383

RESUMO

Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism.


Assuntos
Mytilidae/fisiologia , Animais , Ecossistema , Fontes Hidrotermais , Biologia Marinha , Periodicidade
15.
Water Res ; 179: 115890, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32402865

RESUMO

Pearl-farming leads to significant plastic pollution in French Polynesia (FP) as the end of life of most farming gear is currently poorly managed. Plastic debris released into the aquatic environment accumulates, with potentially detrimental effects on the lagoon ecosystem and pearl oyster Pinctada margaritifera, a species of ecological, commercial and social value. Here, we tested the effects of leachates from new (N) and aged (A) plastic pearl-farming gear (spat collector and synthetic rope) obtained after 24 h and 120 h incubation, on the embryo-larval development of the pearl oyster using an in-vitro assay. Embryos were exposed for 24 h and 48 h to a negative control (0) and the leachate from 0.1, 1, 10 and 100 g of plastic. L-1. After 24 h exposure to leachate at 100 g.L-1, effects were observed on embryo development (-38% to -60% of formed larvae) and mortality (+72% to +82%). Chemical analyses of plastic gear indicated the presence of 26 compounds, consisting of organic contaminants (PAHs) and additives (mainly phthalates). Screening of leachates demonstrated that these compounds leach into the surrounding seawater with an additional detection of pesticides. Higher levels of phthalates were measured in leachates obtained from new (6.7-9.1 µg.L-1) than from aged (0.4-0.5 µg.L-1) plastics, which could be part of the explanation of the clear difference in toxicity observed after 48 h exposure at lower concentrations (0.1-10 g.L-1), associated with mortality ranging from 26 to 86% and 17-28%, respectively. Overall, this study suggests that plastic gear used in the pearl-farming industry releases significant amounts of hazardous chemicals over their lifetime, which may affect pearl oyster development that call for in-situ exploration.


Assuntos
Pinctada , Agricultura , Animais , Ecossistema , Plásticos , Polinésia
16.
Environ Pollut ; 262: 114274, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32135430

RESUMO

The impact of nanoplastics (NP) using model polystyrene nanoparticles amine functionalized (PS-NH2) has been investigated on pigment and lipid compositions of the marine diatom Chaetoceros neogracile, at two growth phases using a low (0.05 µg mL-1) and a high (5 µg mL-1) concentrations for 96 h. Results evidenced an impact on pigment composition associated to the light-harvesting function and photoprotection mainly at exponential phase. NP also impacted lipid composition of diatoms with a re-adjustment of lipid classes and fatty acids noteworthy. Main changes upon NP exposure were observed in galactolipids and triacylglycerol's at both growth phases affecting the thylakoids membrane structure and cellular energy reserve of diatoms. Particularly, exponential cultures exposed to high NP concentration showed an impairment of long chain fatty acids synthesis. Changes in pigment and lipid content of diatom' cells revealed that algae physiology is determinant in the way cells adjust their thylakoid membrane composition to cope with NP contamination stress. Compositions of reserve and membrane lipids are proposed as sensitive markers to assess the impact of NP exposure, including at potential predicted environmental doses, on marine organisms.


Assuntos
Diatomáceas , Organismos Aquáticos , Lipídeos , Poliestirenos , Tilacoides
17.
Harmful Algae ; 92: 101744, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113611

RESUMO

The dinoflagellate genus Alexandrium comprises species that produce highly potent neurotoxins known as paralytic shellfish toxins (PST), and bioactive extracellular compounds (BEC) of unknown structure and ecological significance. The toxic bloom-forming species, Alexandrium minutum, is distributed worldwide and adversely affects many bivalves including the commercially and ecologically important Pacific oyster, Crassostrea gigas. In France, recurrent A. minutum blooms can co-occur with C. gigas spawning and larval development, and may endanger recruitment and population renewal. The present study explores how A. minutum affects oyster early development by exposing embryos and larvae, under controlled laboratory conditions, to two strains of A. minutum, producing only BEC or both PST and BEC. Results highlight the major role of BEC in A. minutum toxicity upon oyster development. The BEC strain caused lysis of embryos, the most sensitive stage to A. minutum toxicity among planktonic life stages. In addition, the non-PST-producing A. minutum strain inhibited hatching, disrupted larval swimming behavior, feeding, growth, and induced drastic decreases in survival and settlement of umbonate and eyed larvae (9 and 68 %, respectively). The findings indicated PST accumulation in oyster larvae (e.g. umbonate stages), possibly impairing development and settlement of larvae in response to the PST-producing strain. This work provides evidences that A. minutum blooms could hamper settlement of shellfish.


Assuntos
Crassostrea , Dinoflagelados , Toxinas Marinhas , Animais , França , Larva , Toxinas Marinhas/toxicidade
18.
Med Sci (Paris) ; 35(5): 463-466, 2019 May.
Artigo em Francês | MEDLINE | ID: mdl-31115329

RESUMO

The Warburg effect is one of the hallmarks of cancer cells in humans. It is a true metabolic reprogramming to aerobic glycolysis, allowing cancer cells to meet their particular energy needs for growth, proliferation, and resistance to apoptosis, depending on the microenvironment they encounter within the tumor. We have recently discovered that the Crassostrea gigas oyster can naturally reprogram its metabolism to the Warburg effect. Thus, the oyster becomes a new invertebrate model useful for cancer research. Due to its lifestyle, the oyster C. gigas has special abilities to adapt its metabolism to the extreme changes in the environment in which it is located. The oyster C. gigas is therefore a model of interest to study how the environment can control the Warburg effect under conditions that could not be explored in vertebrate model species.


Assuntos
Crassostrea/fisiologia , Modelos Animais de Doenças , Neoplasias , Animais , Apoptose , Proliferação de Células , Microambiente Celular , Reprogramação Celular , Glicólise
19.
Environ Pollut ; 250: 807-819, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31039474

RESUMO

Nowadays, environmental pollution by microplastics (<5 mm; MP) is a major issue. MP are contaminating marine organisms consumed by humans. This work studied MP contamination in two bivalve species of commercial interest: blue mussel (Mytilus edulis) and common cockle (Cerastoderma edule) sampled on the Channel coastlines (France). In parallel, 13 plastic additives and 27 hydrophobic organic compounds (HOC) were quantified in bivalves flesh using SBSE-TD-GS-MS/MS to explore a possible relationship between their concentrations and MP contamination levels. MP were extracted using a 10% potassium hydroxide digestion method then identified by µ-Raman spectroscopy. The proportion of contaminated bivalves by MP ranged from 34 to 58%. Blue mussels and common cockles exhibited 0.76 ±â€¯0.40 and 2.46 ±â€¯1.16 MP/individual and between 0.15 ±â€¯0.06 and 0.74 ±â€¯0.35 MP/g of tissue wet weight. Some HOC and plastic additives were detected in bivalves. However, no significant Pearson or Spearman correlation was found between MP loads and plastic additives or HOC concentrations in bivalve tissues for the two species.


Assuntos
Cardiidae/química , Monitoramento Ambiental/métodos , Plásticos/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/química , Contaminação de Alimentos/análise , França , Humanos , Mytilus edulis/química , Alimentos Marinhos/análise
20.
Environ Pollut ; 250: 873-882, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085473

RESUMO

The potential presence of nanoplastics (NP) in aquatic environments represents a growing concern regarding their possible effects on aquatic organisms. The objective of this study was to assess the impact of polystyrene (PS) amino-modified particles (50  nm PSNH2) on the cellular and metabolic responses of the diatom Chaetoceros neogracile cultures at two essential phases of the growth cycle, i.e. exponential (division) and stationary (storage) phases. Both cultures were exposed for 4 days to low (0.05 µg mL-1) and high (5 µg mL-1) concentrations of PS-NH2. Exposure to NP impaired more drastically the major cellular and physiological parameters during exponential phase than during the stationary phase. Only an increase in ROS production was observed at both culture phases following NP exposures. In exponential phase cultures, large decreases in chlorophyll content, esterase activity, cellular growth and photosynthetic efficiency were recorded upon NP exposure, which could have consequences on the diatoms life cycle and higher food-web levels. The observed differential responses to NP exposure according to culture phase could reflect i) the higher concentration of Transparent Exopolymer Particles (TEP) at stationary phase leading to NP aggregation and thus, probably minimizing NP effects, and/or ii) the fact that dividing cells during exponential phase may be intrinsically more sensitive to stress. This work evidenced the importance of algae physiological state for assessing the NP impacts with interactions between NP and TEP being one key factor affecting the fate of NP in algal media and their impact to algal' cells.


Assuntos
Diatomáceas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Relação Dose-Resposta a Droga , Cadeia Alimentar , Modelos Teóricos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...